Detecting & Avoiding Interference Between Goals in Intelligent Agents

نویسندگان

  • John Thangarajah
  • Lin Padgham
  • Michael Winikoff
چکیده

Pro-active agents typically have multiple simultaneous goals. These may interact with each other both positively and negatively. In this paper we provide a mechanism allowing agents to detect and avoid a particular kind of negative interaction where the effects of one goal undo conditions that must be protected for successful pursuit of another goal. In order to detect such interactions we maintain summary information about the definite and potential conditional requirements and resulting effects of goals and their associated plans. We use these summaries to guard protected conditions by scheduling the execution of goals and plan steps. The algorithms and data structures developed allow agents to act rationally instead of blindly pursuing goals that wil l conflict.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Avoiding Resource Conflicts in Intelligent Agents

An intelligent agent should be rational, in particular it should at least avoid pursuing goals which are definitely conflicting. In this paper we focus on resource conflict in agents that use a plan library organised around goals. We characterise different types of resources and define resource requirements summaries. We give algorithms for deriving resource requirements, using resource require...

متن کامل

An Integrated Formal Framework for Reasoning about Goal Interactions

One of the defining characteristics of intelligent software agents is their ability to pursue goals in a flexible and reliable manner, and many modern agent platforms provide some form of goal construct. However, these platforms are surprisingly naive in their handling of interactions between goals. Most provide no support for detecting that two goals interact, which allows an agent to interfer...

متن کامل

Avoiding Wireheading with Value Reinforcement Learning

How can we design good goals for arbitrarily intelligent agents? Reinforcement learning (RL) is a natural approach. Unfortunately, RL does not work well for generally intelligent agents, as RL agents are incentivised to shortcut the reward sensor for maximum reward – the so-called wireheading problem. In this paper we suggest an alternative to RL called value reinforcement learning (VRL). In VR...

متن کامل

A Context-aware Architecture for Mental Model Sharing through Semantic Movement in Intelligent Agents

Recent studies in multi-agent systems are paying increasingly more attention to the paradigm of designing intelligent agents with human inspired concepts. One of the main cognitive concepts driving the core of many recent approaches in multi agent systems is shared mental models. In this paper, we propose an architecture for sharing mental models based on a new concept called semantic movement....

متن کامل

Solving the Dynamic Job Shop Scheduling Problem using Bottleneck and Intelligent Agents based on Genetic Algorithm

The problem of Dynamic Job Shop (DJS) scheduling is one of the most complex problems of machine scheduling. This problem is one of NP-Hard problems for solving which numerous heuristic and metaheuristic methods have so far been presented. Genetic Algorithms (GA) are one of these methods which are successfully applied to these problems. In these approaches, of course, better quality of solutions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003